A note on nonparametric density deconvolution by weighted kernel estimators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric density deconvolution by weighted kernel estimators

JSM, Denver, 4 August 2008 – 3 / 23 We observe a univariate random sample Y1, . . . , Yn from a density g, where Yi = Xi + Zi (i = 1, . . . , n). Here X1, . . . , Xn are independent and identically distributed with unknown continuous density f , and the measurement errors Z1, . . . , Zn form a random sample from the continuous density η which we assume to be known. Our goal is to obtain a nonpa...

متن کامل

Weighted Kernel Estimators in Nonparametric Binomial Regression

This paper is concerned with nonparametric binomial regression. Two kernel-based binomial regression estimators and their bias-adjusted versions are proposed, whose kernels are weighted by the inverses of variance estimators of the observed proportion at each covariate. Asymptotic theories for deriving asymptotic mean squared errors (AMSEs) of proposed estimators are developed. Comparisons with...

متن کامل

Weighted Uniform Consistency of Kernel Density Estimators

Let fn denote a kernel density estimator of a continuous density f in d dimensions, bounded and positive. Let (t) be a positive continuous function such that ‖ f β‖∞ < ∞ for some 0 < β < 1/2. Under natural smoothness conditions, necessary and sufficient conditions for the sequence √ nhn 2| loghn | ‖ (t)(fn(t)−Efn(t))‖∞ to be stochastically bounded and to converge a.s. to a constant are obtained...

متن کامل

Asymptotic Normality of Nonparametric Kernel Type Deconvolution Density Estimators: crossing the Cauchy boundary

We derive asymptotic normality of kernel type deconvolution density estimators. In particular we consider deconvolution problems where the known component of the convolution has a symmetric λ-stable distribution, 0 < λ ≤ 2. It turns out that the limit behavior changes if the exponent parameter λ passes the value one, the case of Cauchy deconvolution. AMS classification: primary 62G05; secondary...

متن کامل

Asymptotic normality for deconvolution kernel density estimators from random fields

The paper discusses the estimation of a continuous density function of the target random field Xi, i ∈ Z N which is contaminated by measurement errors. In particular, the observed random field Yi, i ∈ Z N is such that Yi = Xi + ǫi, where the random error ǫi is from a known distribution and independent of the target random field. Compared to the existing results, the paper is improved in two dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Data and Information Science Society

سال: 2014

ISSN: 1598-9402

DOI: 10.7465/jkdi.2014.25.4.951